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Abstract This paper considers the generalized Bayesian disorder problem in the
discrete time case with two types of the penalty function—the linear and the non-
linear ones. The main results for these cases are given in Theorems 1 and 2, respec-
tively.
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1 Linear Penalty Case

1. Let θ be a parameter taking values in the set {0,1, . . . ,∞}. Suppose that on
the probability space (",F ,P) we consider the sequence of independent random
variables X = (X0,X1, . . . ,Xn, . . .). For given θ we suppose that random variable
Xn with n < θ has the distribution F∞(x) and for n ≥ θ the distribution function is
F0(x). Their density (with respect to the distribution (F0 + F∞)/2) will be denoted
by f∞(x) and f0(x), x ∈ R. For given θ let Pθ = Law(X | θ,P) be the law of X,
and let Fn = σ (X0,X1, . . . ,Xn). For simplicity of considerations we assume that
dF0 ≪ dF∞.

Denote by MT the class of finite stopping times (with respect to (Fn)n≥0) such
that E∞τ ≥ T where T > 0.

The generalized Bayesian problem (with a linear penalty function) consists in
finding stopping time τ ∗

T , if it exists, such that

∞∑

θ=0

Eθ (τ
∗
T − θ)+ = inf

τ∈MT

∞∑

θ=0

Eθ (τ − θ)+. (1)
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The similar problem for the case of Brownian motion was formulated and inves-
tigated in [1, 3, 4]. It turns out that the methods of these papers (especially of [1, 4])
permit to describe the structure of the optimal stopping time for the generalized
Bayesian problem in case of discrete time too.

2. The following theorem plays here the key role.

Theorem 1 For any finite stopping time τ from MT

∞∑

θ=0

Eθ (τ − θ)+ = E∞
τ−1∑

n=0

ψn, (2)

where the Markov sequence ψ = (ψn)n≥0 satisfies the recurrent equations

ψn = (1 + ψn−1)
f0(Xn)

f∞(Xn)
, ψ−1 = 0. (3)

Proof It is evident that

(τ − θ)+ =
∞∑

k=1

I(τ − θ ≥ k) =
∞∑

k=θ+1

I(k ≤ τ ).

So,

Eθ (τ − θ)+ =
∞∑

k=θ+1

Eθ I(k ≤ τ ). (4)

Since k − 1 ≥ θ and {k ≤ τ } ∈ Fk−1 we find

Eθ I(k ≤ τ ) = Ek
d(Pθ |Fk−1)

d(Pk|Fk−1)
I(k ≤ τ ) = E∞

d(Pθ |Fk−1)

d(Pk|Fk−1)
I(k ≤ τ ), (5)

where Pθ |Fk−1 and Pk|Fk−1 are restrictions of the measures Pθ and Pk onto the
σ -algebra Fk−1.

Introduce the notation

Ln = d(P0|Fn)

d(P∞|Fn)
, n ≥ 0, L−1 = 1.

Then

d(Pθ |Fk−1)

d(Pk|Fk−1)
= d(Pθ |Fk−1)

d(P∞|Fk−1)
=

d(Pθ |Fk−1)
d(P0|Fk−1)

d(P∞|Fk−1)
d(P0|Fk−1)

= Lk−1
d(P0|Fk−1)
d(Pθ |Fk−1)

= Lk−1
d(P0|Fθ−1)
d(P∞|Fθ−1)

= Lk−1

Lθ−1
, (6)
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where we used for k − 1 ≥ θ the property

d(P0|Fk−1)

d(Pθ |Fk−1)
= f0(X0) · · ·f0(Xθ−1) · f0(Xθ ) · · ·f0(Xk−1)

f∞(X0) · · ·f∞(Xθ−1) · f0(Xθ ) · · ·f0(Xk−1)

= d(P0|Fθ−1)

d(P∞|Fθ−1)
.

From (4)–(6) we deduce

∞∑

θ=0

Eθ (τ − θ)+ = E∞
∞∑

θ=0

[ ∞∑

n=θ+1

I(n ≤ τ )
Ln−1

Lθ−1

]

= E∞
∞∑

θ=0

τ∑

n=θ+1

Ln−1

Lθ−1
= E∞

τ∑

n=1

(
n−1∑

θ=0

Ln−1

Lθ−1

)

(7)

which implies that (2) holds for

ψn =
n∑

θ=0

Ln

Lθ−1
, ψ−1 = 0. (8)

The recurrent equations (3) follow immediately from (8):

ψn = Ln

Ln−1

(

1 +
n−1∑

θ=0

Ln−1

Lθ−1

)

= (1 + ψn−1)
f0(Xn)

f∞(Xn)
.

!

3.

Remark 1 Statistical procedures based on the process ψ = (ψn)n≥0 are well known
in the statistical literature as “Shiryaev-Roberts procedures”.

Remark 2 From Theorem 1 it follows that for solving the conditionally Bayesian
problem (1) in the class MT we need to solve the following conditionally optimal
stopping problem: to find a stopping time τ ∗

T ∈ MT such that

E∞

τ∗
T −1∑

n=0

ψn = inf
τ∈MT

E∞
τ−1∑

n=0

ψn. (9)

The standard method of solution of such problems is based on ideas of the La-
grange multipliers: for any C > 0, to find a stopping time τ̃C such that

E∞
τ̃C−1∑

n=0

(ψn − C) = inf
τ

E∞
τ−1∑

n=0

(ψn − C) (10)
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where imfimum is taken over all finite stopping times τ .
If there exist C = C(T ) such that E∞τ̃C(T ) = T , then this stopping time is opti-

mal in the class MT and so we may take τ ∗
T = τ̃C(T ).

Remark 3 The “classical” Bayesian disorder problem consists (see [3]) in finding
stopping time τ ∗

T ∈ MT , if it exists, such that

P(τ ∗
T ≤ θ) + cE(τ ∗

T − θ)+ = inf
τ∈MT

(
P(τ ≤ θ) + cE(τ − θ)+

)
,

where θ has a geometric prior distribution with parameter p and c > 0. The optimal
τ ∗
T for this problem was given in [3].

It turns out that when p → 0 this Bayesian problem “converges” to the general-
ized Bayesian problem. This fact together with the result similar to the statement of
Theorem 1 were also obtained in [2].

2 Nonlinear Penalty Case

1. Instead of the “linear case” (1) now we consider the following nonlinear prob-
lem with “nonlinear penalty function” G = G(n),n ≥ 0: to find a stopping time τ ∗

T
in the class MT , T > 0, such that

∞∑

θ=0

EθG((τ ∗
T − θ)+) = inf

τ∈MT

∞∑

θ=0

EθG((τ − θ)+). (11)

In the linear case G(n) = n,n ≥ 0, Theorem 1 claims that in problem (1) there
exists one sufficient statistics, namely ψ = (ψn)n≥0, which is a Markov sequence
(with respect to P∞). Now we want to find under what conditions on function
G = G(n), n ≥ 0, there exist a finite number of statistics which form a multidimen-
sional Markov system of sufficient statistics for solving the corresponding stopping
time problem.

2. Suppose that G = G(n),n ≥ 0, is a nondecreasing function with G(0) = 0 and

G(n) =
n∑

k=1

g(k), where g(k) ≥ 0 for k > 0.

If τ ≥ θ then

G(τ − θ) =
τ−θ∑

k=1

g(k) =
∞∑

k=1

I(1 ≤ k ≤ τ − θ)g(k)

=
∞∑

n=θ+1

I(n ≤ τ )g(n − θ).
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Thus,

EθG((τ − θ)+) = Eθ I(τ ≥ θ)G(τ − θ)

= Eθ I(τ ≥ θ)

∞∑

n=θ+1

I(n ≤ τ )g(n − θ)

= Eθ

∞∑

n=θ+1

I(n ≤ τ )g(n − θ) =
∞∑

n=θ+1

g(n − θ)Eθ I(n ≤ τ ). (12)

Since {n ≤ τ } ∈ Fn−1, we deduce, using (6), that for n − 1 ≥ θ

Eθ I(n ≤ τ ) = En
dPθ

dPn
I(n ≤ τ ) = En

d(Pθ |Fn−1)

d(Pn|Fn−1)
I(n ≤ τ )

= E∞
d(Pθ |Fn−1)

d(P∞|Fn−1)
I(n ≤ τ ) = E∞

Ln−1

Lθ−1
I(n ≤ τ ).

Substituting this into (12) implies that

EθG((τ − θ)+) =
∞∑

n=θ+1

g(n − θ)E∞
Ln−1

Lθ−1
I(n ≤ τ ).

Thus

∞∑

θ=0

EθG((τ − θ)+) =
∞∑

θ=0

[ ∞∑

n=θ+1

g(n − θ)E∞
Ln−1

Lθ−1
I(n ≤ τ )

]

= E∞
τ∑

n=1

[
n−1∑

θ=0

g(n − θ)
Ln−1

Lθ−1

]

= E∞
τ∑

n=1

&n−1(g) = E∞
τ−1∑

n=0

&n(g) (13)

where

&n(g) =
n∑

θ=0

g(n + 1 − θ)
Ln

Lθ−1
.

From (13) we find the following representation:

inf
τ∈MT

∞∑

θ=0

Eθ (τ − θ)+ = inf
τ∈MT

E∞

[
τ−1∑

n=0

&n(g)

]

. (14)
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3. To get for the problem (11) a finite number of Markovian sufficient statistics let
us assume that for t ≥ 0

g(t) =
M∑

m=0

K∑

k=0

cmke
λmt tk, (15)

where λ0 = 0.
Consider first the case K = 0:

g(t) =
M∑

m=0

cm0e
λmt . (16)

Under this assumption

&n(g) =
n∑

θ=0

M∑

m=0

cm0e
λm(n+1−θ) Ln

Lθ−1

= c00

n∑

θ=0

Ln

Lθ−1
+

M∑

m=1

n∑

θ=0

cm0e
λm(n+1−θ) Ln

Lθ−1
. (17)

Put

ψn =
n∑

θ=0

Ln

Lθ−1
, ψ−1 = 0 (18)

and

ψ (m,0)
n =

n∑

θ=0

eλm(n+1−θ) Ln

Lθ−1
=

n∑

θ=0

L
(m)
n

L
(m)
θ−1

, (19)

where L
(m)
n = eλmnLn.

Then

ψ (m,0)
n =

n∑

θ=0

L
(m)
n

L
(m)
θ−1

= L
(m)
n

L
(m)
n−1

+
n−1∑

θ=0

L
(m)
n

L
(m)
θ−1

= eλm
Ln

Ln−1
+ L

(m)
n

L
(m)
n−1

n−1∑

θ=0

L
(m)
n−1

L
(m)
θ−1

= eλm
f0(Xn)

f∞(Xn)
(1 + ψ

(m,0)
n−1 ).

So, we have the following system of equations for ψn and (ψ
(1,0)
n , . . . ,ψ

(M,0)
n ):

⎧
⎨

⎩
ψn = f0(Xn)

f∞(Xn) (1 + ψn−1), ψ−1 = 0,

ψ
(m,0)
n = eλm f0(Xn)

f∞(Xn) (1 + ψ
(m,0)
n−1 ), ψ

(m,0)
−1 = 0.

(20)
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It is interesting to note that (with respect to the measure P∞) all sequences
ψ = (ψn)n≥0, ψ (m,0) = (ψ

(m,0)
n )n≥0 are Markovian and by (17)

&n(g) = c00ψn +
M∑

m=1

cm0ψ
(m,0)
n , (21)

i.e. in the case (16) &n(g) is a sum of the Markovian sequences from the set
(ψ,ψ (1,0), . . . ,ψ (M,0)).

4. Now assume that M = 0. In this case

g(t) =
K∑

k=0

c0kt
k = c00 +

K∑

k=1

c0kt
k. (22)

Denote for 1 ≤ k ≤ K

ψ (0,k)
n =

n∑

θ=0

(n + 1 − θ)k
Ln

Lθ−1
. (23)

Then

ψ (0,k)
n =

n∑

θ=0

k∑

i=0

Ci
k(n − θ)i

Ln

Lθ−1

=
n∑

θ=0

Ln

Lθ−1
+

k∑

i=1

n∑

θ=0

Ci
k(n − θ)i

Ln

Lθ−1

= ψn +
k∑

i=1

Ln

Ln−1

n−1∑

θ=0

Ci
k(n − θ)i

Ln−1

Lθ−1

= ψn + f0(Xn)

f∞(Xn)

k∑

i=1

Ci
kψ

(0,i)
n−1

= f0(Xn)

f∞(Xn)

(
k∑

i=0

Ci
kψ

(0,i)
n−1 + 1

)

, (24)

where ψ
(0,0)
n−1 = ψn−1.

So, for the case (22) the family of statistics (ψn,ψ
(0,1)
n , . . . ,ψ

(0,K)
n )n≥0 is

Markovian satisfying to the following system:
⎧
⎨

⎩
ψn = f0(Xn)

f∞(Xn) (1 + ψn−1), ψ−1 = 0,

ψ
(0,k)
n = f0(Xn)

f∞(Xn) (
∑k

i=0 Ci
kψ

(0,i)
n−1 + 1), ψ

(0,k)
−1 = 0, k = 1, . . . ,K.

(25)
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5. Consider finally the general case (15).
Denote for 1 ≤ m ≤ M , 1 ≤ k ≤ K

ψ (m,k)
n =

n∑

θ=0

eλm(n+1−θ)(n + 1 − θ)k
Ln

Lθ−1
=

n∑

θ=0

(n + 1 − θ)k
L

(m)
n

L
(m)
θ−1

(26)

where L
(m)
n = eλmnLn. Then

ψ (m,k)
n =

n∑

θ=0

k∑

i=0

Ci
k(n − θ)i

L
(m)
n

L
(m)
θ−1

=
k∑

i=1

n∑

θ=0

Ci
k(n − θ)i

L
(m)
n

L
(m)
θ−1

+
n∑

θ=0

L
(m)
n

L
(m)
θ−1

=
k∑

i=1

n−1∑

θ=0

Ci
k(n − θ)i

L
(m)
n

L
(m)
θ−1

+ ψ (m,0)
n

=
k∑

i=1

Ci
k

L
(m)
n

L
(m)
n−1

n−1∑

θ=0

(n − θ)i
L

(m)
n−1

L
(m)
θ−1

+ ψ (m,0)
n

= eλm
f0(Xn)

f∞(Xn)

k∑

i=1

Ci
kψ

(m,i)
n−1 + ψ (m,0)

n . (27)

Together with (20) the formula (27) gives recurrent equations:

ψ (m,k)
n = eλm

f0(Xn)

f∞(Xn)

[
k∑

i=0

Ci
kψ

(m,i)
n−1 + 1

]

, ψ
(m,k)
−1 = 0. (28)

Hence, we get the following extension of Theorem 1 for nonlinear penalty func-
tions.

Theorem 2 For the case of independent observations and the nonlinear penalty
function G(n) = ∑n

k=1 g(k) with g given by (15) the system

(ψn,ψ
(m,k)
n )n≥0, 0 ≤ m ≤ M, 0 ≤ k ≤ K (29)

is a Markovian family with recurrent equations (20), (25), (28). This family forms
a system of sufficient statistics in the sense that they define &n(g):

&n(g) =
M∑

m=0

K∑

k=0

cmkψ
(m,k)
n . (30)

Example 1 If G(n) = n,n ≥ 0, i.e. g ≡ 1, then there exists only one sufficient sta-
tistics ψ = (ψn)n≥0.
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Example 2 If G(n) = n2 + n, i.e. g(n) = 2n, then

&n(g) = &n−1(g)
f0(Xn)

f∞(Xn)
+ 2ψn. (31)

Remark 4 It is important to note that the recurrent equations of Theorems 1 and 2
can be directly extended on more general cases of nonindependent random vari-
ables: in all recurrent equations the ratios f0(Xn)/f∞(Xn) should be changed to
Ln/Ln−1. (See more details about “θ -models” in [5].)
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